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1. Nonlinear Mappings and Vector Derivatives
Differentiable Nonlinear Mappings. In this note we consider general nonlinear mappings be-
tween two finite-dimensional real vector spaces

h(·) : X = Rn → Y = Rm. (1)

The image of a function h(·) is defined to be the image of the domain X under the action of the
mapping,

Im(h) = h(X ) = {y | y = h(x), x ∈ X } ⊂ Y .

If h(·) happens to be linear, then the image of h is also called the range of h. We will assume
throughout this note that the m components of any function, h(x) ∈ Rm, under consideration,

hi(x) = hi(x1, · · · , xn), i = 1, · · · ,m,

are at least twice differentiable with respect to the components, xj , of the vector x ∈ Rn.

1
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1.1 The Partial Derivative and Jacobian Operator ∂
∂x

The Partial Derivative and Partial Derivative Operator. Consider, a real-valued function

f(·) : X = Rn → R .

Given a value of the function, f(x) ∈ R, evaluated at a particular point in the domain x ∈ X ,
often we are interested in determining how to increase or decrease the value of f(x) via local
displacements from the nominal point x, x 7→ x+ dx.

The differential change in the value of the real-valued function f(x) due to a differential change
in the vector x, x 7→ x+ dx, is given by

df =
∂f(x)

∂x1

dx1 + · · ·+ ∂f(x)

∂xn
dxn

=
(

∂f(x)
∂x1

· · · ∂f(x)
∂xn

)dx1
...

dxn


or

df =
∂f(x)

∂x
dx (2)

where to obtain the last relationship, we define the 1 × n row-vector (covariant) partial derivative
operator. Note that it is defined without any reference to a metric, and thus exists even in a non-
metric space.

∂

∂x
,

(
∂

∂x1

· · · ∂

∂xn

)
(3)

and the row-vector (covariant) partial derivative quantity ∂f(x)
∂x

by

∂f(x)

∂x
,

(
∂f(x)

∂x1

· · · ∂f(x)

∂xn

)
. (4)

In contrast to the definition (4), in much of the engineering and elementary mathematics litera-
ture it is common to define ∂f

∂x
to be the transpose of the right-hand-side of (4) and then to identify it

as the gradient of f evaluated at the point x (potentially erroneously, as discussed below). However,
as discussed in advanced courses on Calculus on Manifolds; Differential Geometry; and Geomet-
rical Physics,1 it is the row vector (4) that is the “natural” most general choice when defining the

1 See, for example, the following references: Ralph Abraham, Jerrold E. Marsden, & Tudor Ratiu, Manifolds,
Tensor Analysis, and Applications, 1983, Addison-Wesley; Michael Spivak, A Comprehensive Introduction to Dif-
ferential Geometry, 2nd Edition (5 Volumes), 1979, Publish or Perish Press; Charles Misner, Kip Thorne, & John
Wheeler, Gravitation, 1973, W.H. Freeman & Co.; Bernard Schutz, Geometrical Methods of Mathematical Physics,
1980, Cambridge University Press; Theodore Frankel, The Geometry of Physics, An Introduction, 2001 (with correc-
tions and additions), Cambridge University Press. I particularly recommend the last-mentioned text by Frankel for use
by Engineers and Physicists. A very accessible introduction to many of the important concepts can also be found in
the book by Schutz.
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quantity ∂f
∂x

and not the column vector obtained by taking the transpose of (4).2 As detailed, for
example, in the textbook by Frankel,3 under a change of basis the column vector of partial deriva-
tives obtained by transposing (4) generally does not transform like a vector properly should if it is
to have intrinsic geometric meaning.4 Nonetheless, it is the transpose of (4) that is usually called
the gradient, or gradient vector, of f in the engineering and elementary calculus literature.5

Throughout this note we take ∂f(x)
∂x

to be defined by equation (4) and call it the partial derivative
of f with respect to x, the covariant form of the gradient, or the cogradient, to distinguish it from
the commonly used column-gradient or gradient vector which will instead be noted as ∇xf (and
described in further detail below).6

Consistent with the above discussion, we call the row-operator ∂
∂x

defined by equation (3)
the (row) partial derivative operator, the covariant form of the gradient operator, the cogradient
operator, the row-gradient operator, or the covariant derivative operator.

First-Order Necessary Condition for an Optimum. Maxima, minima, and inflection points of
the differentiable real-valued function f are so-called stationary points of f . These are points, x,
in the domain of f at which the value f(x) does not change to first order, given arbitrary first-order

2Indeed, in the books by Abraham, Marsden, & Ratiu; Misner, Thorne, & Wheeler; and Schutz (op. cit. footnote
(1)) the row-vector equation (4) is taken to define the gradient of f . However, following Frankel, op. cit., we more
carefully distinguish between equation (4) as defining the partial derivative (i.e., as the covariant form of the gradient
which exists even in a non-metric space) and the gradient (the contravariant form of the partial derivative given by
equation (24),which requires the existence of a metric).

3T. Frankel, op. cit. footnote (1), pp. 40-47.
4That is, if it is to have a meaning which does not depend on the particular, accidental, contingent coordinate system

one happens to be using at the moment. The calculus on manifolds is concerned with objects and properties which are
invariant with respect to general coordinate transformations as such objects are likely to have intrinsic properties of
the space itself which do not depend spuriously on accidents of perspective.

It is true, however, that if one is only interested in proper orthogonal transformations (i.e., rotations) between
Cartesian coordinate systems, then the use of the simple column vector of derivatives as the gradient is correct and
well-behaved (as discussed further below). This accounts for the accepted and wide-spread use of the column-vector
definition of the gradient in those domains where non-Cartesian spaces are rarely, if ever, encountered. The point
is that whether or not the column definition of the gradient is “right” or “wrong” depends on the particular problem
domain.

5Even though the gradient vector defined by simply transposing (4) is not generally contravariant (i.e., generally
does not properly transform like a vector, except in special cases as mentioned at the end of the previous footnote).

6We reiterate the fact that the definition (4) used in this note is contrary to the definitions used in many (per-
haps most) electrical engineering textbooks, including: Todd Moon & Wynn Stirling, Mathematical Methods and
Algorithms for Signal Processing, 2000, Prentice Hall; Steven Kay, Fundamentals of Statistical Signal Processing:
Estimation Theory, 1993, Prentice Hall; and Simon Haykin, Adaptive Filter Theory, 3rd Edition, 1996, Prentice Hall.
In these texts ∂f

∂x = ∇xf = transpose of right-hand-side of (4). However, there are useful electrical engineering
texts which do use the definition (4), including: Graham Goodwin & Robert Payne, Dynamic System Identification,
1977, Academic Press; Rolf Johansson, System Modeling & Identification, 1993, Prentice Hall; and Harold Sorenson,
Parameter Estimation, 1980, Marcel Dekker. The definition (4) is also the standard definition used in virtually all
robotics textbooks.
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variations, dx, about x. The condition for stationarity at the point x is that

df(x) =
∂f(x)

∂x
dx = 0

for any arbitrary variation dx about x. This is true if and only if the partial derivative of f vanishes
at x, so that

x is a stationary point of f ⇔ ∂f(x)

∂x
= 0 . (5)

This is just the well-known stationarity condition that all partial derivatives of f take the value 0
at the point x, ∂f(x)

∂xi
= 0, i = 1, · · · , n. In particular, this is a necessary condition that f(x) has a

local minimum at the point x.7

The Jacobian Operator. Given a general differentiable vector-valued m-dimensional nonlinear
function h(x) of the form (1), and the “natural” definition of the partial derivative operator ∂

∂x

given by (3), we can naturally extend the action of the partial derivative to h(x) by applying the
definition (3) component-wise to the elements of h(x),

∂h(x)

∂x
,


∂h1(x)
∂x
...

∂hm(x)
∂x

 =


∂h1(x)
∂x1

· · · ∂h1(x)
∂xn

... . . . ...
∂hm(x)
∂x1

· · · ∂hm(x)
∂xn

 ∈ Rm×n. (6)

Equation (6) is called the Jacobian or Jacobian matrix of h(x).8 For this reason, we also call the
partial derivative operator ∂

∂x
the Jacobian operator. The Jacobian of h is often denoted by Jh,

Jh(x) ,
∂h(x)

∂x
.

Coordinate Transformations. A change of (local) coordinate representation corresponds to a
mapping y = h(x) with m = n. Often this is denoted (with some danger of confusion) by
y = y(x). The Jacobian of this coordinate transformation is denoted variously as

Jy(x) = Jh(x) =
∂y(x)

∂x
=
∂h(x)

∂x
∈ Rn×n ,

or even merely as J when there is no possibility of confusion. For y = h(x) to provide a valid
change of coordinates, the differentiable function h(·) must be one-to-one and onto (i.e., invertible)
and have a differentiable inverse x = h−1(y) = x(y). This condition corresponds to the require-
ment that the n × n Jacobian Jy be invertible (i.e., nonsingular). Nonsingularity of the Jacobian

7Else one could find an infinitesimal displacement dx such that f(x + dx) = f(x) + ∂f(x)
∂x dx < f(x), thereby

contradicting the claim that x is a local minimum.
8The Jacobian is discussed at great length in robotics textbooks.
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corresponds to the requirement that the Jacobian determinant of the transformation9

det
∂h(x)

∂x
= det Jh(x) ∈ R

exists and be nonzero.

Coordinates do not have to be orthogonal, or normalized, or orthonormal.10 Coordinate systems
which are locally, but not globally, orthogonal (but not necessarily normalized) include the stan-
dard curvilinear coordinate systems such as cylindrical coordinates, spherical polar coordinates,
parabolic coordinates, ellipsoidal coordinates, toroidal coordinates, etc.11

With the assumption that the Jacobian describing a transformation between coordinate repre-
sentations is nonsingular we have

Jx(y) = J−1
y (x) for y = y(x) .

Locally, then, a differentiable change of coordinates y = h(x) is given by

dy = Jy(x) dx = J−1
x (y) dx for y = h(x) . (7)

Defining the tangent vectors12

v =
dy

dt
and w =

dx

dt

equation (7) yields
v = Jw (8)

where it is understood that this expression is assumed to hold for a local coordinate systems located
at the point x ∈ X = Rn and corresponds to a transformation between coordinate systems. The
collection of tangent vectors, v, to a manifold X at the point x is called the tangent space at the
point x and is denoted by TxX . In our case, the manifold is equal to the space Rn, X = Rn, and
the tangent space is is given by13

TxX = Tx Rn = Rn
x , {x}+ Rn .

9The absolute value of the Jacobian determinant is used to obtain the probability density function of the transformed
random vector, Y (ω) = h(X(ω)), from the known pdf pX(x), as discussed in standard courses on probability theory.
In older textbooks, the Jacobian determinant of the transformation is often denoted as

J

(
y1, · · · , yn
x1, · · · , xn

)
or

∂(y1, · · · , yn)

∂(x1, · · · , xn)
.

10Indeed, the concepts of normalization or orthogonality do not even exist on general spaces. Only when an appro-
priate metric or inner product is present do these concepts make sense.

11See, e.g., George Arfkin, Mathematical Methods for Physicists, 2nd Edition, 1970, Academic Press.
12Tangent vectors are further discussed is a slightly more rigorous manner later below.
13Although slightly notationlly abusive, often we write Rn

x = x+ Rn,
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The tangent space Rn
x is a version of Rn which has been translated to the point x ∈ Rn. One can

think of Rn
x as a copy of Rn with origin now located at the point x.14

Equation (8) shows the change of representation between two different representations of the
same tangent vector in TxX = Rn

x. Quantities which transform like (8) are said to be vector-like
or contravariant and are viewed as two different representations of the same contravariant object.
As shown below in equation (26), the gradient transforms like a vector and hence is contravariant.

Transformation of the Partial Derivative Operator. Consider a change of coordinates y =
y(x) and a differentiable function f(y). Application of the chain-rule at the component level
readily yields the fact that

∂f(y)

∂y
=
∂f(y)

∂x

∂x

∂y
=
∂f(y)

∂x
Jx(y) =

∂f(y)

∂x
J−1
y (x) for y = h(x) . (9)

Thus, under a change of coordinates y = h(x), the partial derivative operator transforms as

∂ ( · )
∂y

=
∂ ( · )
∂x

Jx =
∂ ( · )
∂x

J−1
y . (10)

Any two row-vector like objects r and s which transform like15 (10)

r = sJ (11)

are said to be covector-like or covariant and are viewed as two different representations of the
same covariant object.16 Equation (9) shows that the partial derivative is a covariant object.

Partial Derivative as Linear Functional and Differential Operator. Note that in the relation-
ship (2), the differential variation df is dependent both upon the choice of the point x and the
particular differential variation, dx, taken in the domain of the scalar function f(x),

df = dfx(dx) =
∂f(x)

∂x
dx . (12)

14Note the careful distinction which is kept between the point x which locates a tangent space on the manifold, and
the tangent vectors, v, which live in this tangent space. The fact that TxX = {x}+Rn is an artifact of the fact that the
manifold (ambient space) X just happens, in this case, to be the Euclidean space X = Rn. More generally we should
write TxX = {x} × Rn. For (x, v) ∈ TxX = {x} × Rn, the component x ∈ X is called a point (of X ) while the
component v ∈ Rn is referred to as a vector. By convention TxX = {x} × Rn 6= Tx′X = {x′} × Rn when x 6= x′.
This more careful notation makes it clear that (x, v) and (x′, v) refer to two different tangent vectors, even though we
are denoting both tangent vectors by the same symbol, v, and also clarifies the distinction between points and vectors.
In our case where we can make the identification {x} ×Rn ≈ {x}+ Rn, we can view the points x and x′ as locating
the origins of the two different tangent spaces via a displacement of Rn via amounts x and x′, and the vector v as
indicating a direction and magnitude relative to those origins.

15it is understood that the quantities r, s, and J are all referenced to the same point x ∈ X
16The collection of all covectors located a a point x ∈ X comprises the cotangent space T∗xX of X at the point x.

A cotangent vector is a linear functional on the tangent space TxX .
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Note that df is a differential variation in the elementary calculus sense while

dfx( · ) , ∂f(x)

∂x
( · ) (13)

is a differential operator which produces a specific differential variation df by acting on a specific
differential variation dx.

Heuristically, let us denote an arbitrary differential domain-space variation dx by

dx = ε v (14)

where ε > 0 is “infinitesimal”17 and v ∈ Rn
x is an arbitrary vector in the domain space X = Rn

viewed as having been translated so that its origin is now located at the point x.18 This yields

dfx(dx) = ε dfx(v) (15)

where

dfx(v) =
∂f(x)

∂x
v . (16)

This heuristic statement can be made rigorous by viewing f as a function over a differentiable
parameterized curve x(t),19 and taking ε = dt in equation (15) so that (15) becomes20

dx(t)

dt
= v(t) .

At a particular parameter value t = t0, this yields

df

dt
(x(t0)) = dfx

(
dx(t0)

dt

)
=
∂f(x(t0))

∂x

dx(t0)

dt
.

By taking the “velocity vector” dx(t0)
dt

to have the value v ∈ Rn
x(t0),

dx(t0)
dt

= v, we retrieve equation
(16) for x = x(t0). The vector v is known as a tangent vector.21

The operator dfx(·) is a so-called linear functional, linearly mapping vectors v ∈ Rn
x to real

scalar values dfx(v) ∈ Rf(x).22 The operator dfx(·) is often called the differential operator of f .
Note that the partial derivative of f , the Jacobian of f and the differential operator of f are all
essentially the same object but viewed from different perspectives.

17The parameter ε corresponds to the gradient-descent algorithm step-size parameter α presented in a later sec-
tion and used, precisely as heuristically presented here, as a “control” to ensure that finite-difference statements are
approximately as good as their equivalent differential statements.

18Rn
x is called the tangent space to Rn at the point x. See Frankel, op. cit. footnote (1), page 7.

19Note that then a choice of a value for parameter t then fixes a location on the manifold along the curve.
20See the references cited in footnote (1).
21It is tangent to the curve x(t) at t = t0 and lives in the tangent space Rn

x(t0)
. See ref.’s in footnote (1).

22That is, dfx(·) linearly maps vectors from the tangent space to Rn at the point x to scalar displacements located
in the tangent space to R at the point f(x).
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1.2 The Gradient Operator ∇x

The Metric Tensor. Let us assume that each tangent space, Rn
x of the space X = Rn is an

inner-product space with symmetric, positive-definite weighting matrix Ωx = ΩT
x > 0.23

The inner-product weighting matrix Ωx is known as a metric tensor in the differential geometry
and tensor calculus literature and most generally depends upon the particular point x at which the
tangent space Rn

x is located. The existence of a metric tensor results in the inner-product

〈v1, v2〉 = vT1 Ωxv2 v1, v2 ∈ Rn
x (17)

and the corresponding norm
‖v‖ =

√
vTΩxv v ∈ Rn

x . (18)

If Ωx is a positive definite matrix for all x then the space X is said to be Riemannian. Because
a positive definite weighting matrix can always be transformed to a coordinate representation for
which the metric is Cartesian, Ωx = I , a Riemannian space is locally Cartesian.24

In the theory of calculus on manifolds scalars are real (or complex) valued quantities which
are invariant with respect to change of coordinate representations. Extremely important scalars
on a Riemannian space are the inner product (17) and the norm (18). Their invariance corresponds
to the requirement that they have an intrinsic meaning independent of the particular coordinate
system that one happens to be using at the moment.

Suppose we have a change of coordinates y = h(x). With the identifications w = dy
dt

and
v = dx

dt
, we see from equation (7) that the coordinate transformation y = h(x) induces a change of

local coordinates on the tangent space Rn
x according to

w = Jyv = (Jx)−1v or v = Jxw . (19)

Equation (19) is very important as it shows us how quantities which we can identify as (tangent)
vectors25 must transform if important scalar quantities are to remain invariant.26 If a quantity does

23Recall that a finite-dimensional positive-definite inner-product space is a Hilbert space. Our assumption that
Ωx > 0 says that each tangent space is a Hilbert space.

The dependance of the metric tensor Ωx on the particular point x means that it encodes critical information about
the curvature of the space. If for some coordinate system the metric tensor is independent of every location, x, in the
space, Ωx = Ω, then the space is said to be ”flat” or ”Euclidean”. In this case, the entire space (not just the tangent
spaces) is (or can be transformed into) a Hilbert space.

24I.e., because Ωx is assumed positive definite, within each tangent space Rn
x one can choose to transform to Carte-

sian coordinates x′ for which Ωx′ = I . If the space is “flat” (see footnote 23), so that the metric tensor is independent
of x, Ωx = Ω, then a change of coordinate representation can be performed which will make the space globally
Cartesian.

Indefinite metrics can occur for which Ωx is an indefinite matrix, but for which the resulting inner-product space is
nondegenerate in the sense that the only vector orthogonal to every vector is the zero vector. Such spaces are called
pseudo-Riemannian. Perhaps the best-known pseudo-Riemannian space is the Minkowski space-time of Einstein’s
special theory of relatively, which has the indefinite metrix Ωx = diag (−1,+1,+1,+1); see Misner, Thorne, &
Wheeler, op. cit. footnote (1).

25I.e., as vector rates of change or as local vector displacements.
26Quantities which transform like vectors, i.e., like equation (19), are said to be contravariant.
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not transform according to (19) under a change of basis, it is not a vector in the sense demanded
by considerations of invariance under a change of coordinates.

Invariance of the norm (18) yields,

‖v‖2 = vTΩxv = wTJT
x ΩxJxw = wTΩyw = ‖w‖2 .

Since this must be true for all possible tangent vectors v, we obtain the important and useful result
that

Ωy = JT
x ΩxJx = (Jy)

−T Ωx (Jy)
−1 , (20)

where Jy = ∂y(x)
∂x

. Note that (20) can be viewed as providing two ways to construct the new
metric tensor Ωy from knowledge of the old metric tensor Ωx and the transformation y = h(x).
Specifically, one can determine Ωy either via the relationship

Ωy = JT
x ΩxJx (21)

or via
Ωy = (Jy)

−T Ωx (Jy)
−1 . (22)

Not surprisingly, it is usually easiest to compute Jx directly (when possible) and construct Ωy

from (21), thereby forgoing the often difficult symbolic inversion involved in computing J−1
y from

Jy which is required to compute Ωy via equation (22).

To determine a metric tensor in new coordinates, usually it is simplest to start with a known
Cartesian (orthonormal) basis on Rn

x, for which we have (with the identification v ∼ dx)

‖dx‖2 = (dx1)2 + · · ·+ (dxn)2 .

Together with the differential relationships

dxj =
∂xj
∂y1

dy1 + · · ·+ ∂xj
∂yn

dyn j = 1, · · · , n

one can determine the components of the metric tensor Ωy. Of course this is precisely the procedure
suggested by equation (20), taking w ∼ dy and Ωx = I .

Derivation of the Gradient Operator. Given a metric tensor Ωx we can transform the partial
derivative operator into a gradient operator as follows.

With the inner product 〈v1, v2〉 = vT1 Ωxv2, we note that equation (16) can be written as

dfx(v) =
∂f(x)

∂x
v

=

[
Ω−1

x

(
∂f(x)

∂x

)T
]T

Ωx v

=

〈
Ω−1

x

(
∂f(x)

∂x

)T

, v

〉
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or
dfx(v) = 〈∇xf(x), v〉 (23)

where

∇xf(x) , Ω−1
x

(
∂f(x)

∂x

)T

= Ω−1
x


∂f(x)
∂x1...
∂f(x)
∂xn

 ∈ Rn . (24)

The quantity ∇xf(x) is called the gradient of f at the point x and is uniquely defined by equation
(24).27

Now let v be an arbitrary unit vector, ‖v‖ = 1. From the Cauchy-Schwarz inequality we have

|dfx(v)| ≤ ‖∇xf(x)‖‖v‖ = ‖∇xf(x)‖

with equality holding if and only if v is proportional to ∇xf(x), i.e., if and only if the unit vector
v is given by

v = ± ∇xf(x)

‖∇xf(x)‖
.

These choices for v give the directions of steepest change in the local value of the function f as a
function of the choice of dx = ε v and they yield28

dfx(v) = ±‖∇xf(x)‖ = ±

√
∂f(x)

∂x
Ω−1

x

∂f(x)

∂x

T

.

The choice
v ∝ ∇xf(x)

gives the (local) direction of steepest ascent of f , while the choice

v ∝ −∇xf(x)

gives the (local) direction of steepest descent of f . Note that the concept of “steepest direction”
depends on the choice of metric, so that it is no accident that the gradient of f depends on the
metric tensor Ωx.

On a space with a well-defined metric Ωx, from the partial derivative operator (3) we define the
gradient operator as

∇x , Ω−1
x

(
∂

∂x

)T

= Ω−1
x


∂
∂x1...
∂
∂xn

 . (25)

27Our result is a special case of a more general result, the Riesz Representation Theorem, which says that any
bounded linear functional on a general Hilbert space acting on any point, v, in that space, can be represented as an
inner product of v with a unique vector in the space which is said to provide a representation of the linear functional.
(See Arch Naylor & George Sell, Linear Operator Theory in Engineering and Science, 1982, Springer-Verlag.) In our
case the linear functional is the differential operator dfx(·) (fixing the point x) and the unique representing vector is
the gradient of f at the point x,∇xf .

28Remember that we are working with a weighted inner product and norm with weighting matrix Ωx.
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The gradient operator has meaning on a Riemannian space29 while the partial derivative operator
has meaning in a general vector space setting. Furthermore, even in a Riemannian space the
gradient operator can have the simple form

(
∂
∂x

)T provided that the metric is Cartesian, Ωx = I ,
as we shall now discuss.

The Gradient Vector as a “Natural Gradient.” Simply taking the transpose of the covector is
how the gradient vector is commonly defined in elementary calculus books and in many engineer-
ing textbooks and research papers. Let us call the object obtained in this manner, for now, the naive
gradient,30

∇naive
x f(x) =

(
∂f(x)

∂x

)T

.

Note from (9) that the naive gradient transforms under a change of coordinates y = h(x) according
to

∇naive
y f(y) = J−Ty ∇naive

x f(y) where y = h(x) .

Note, then, that the naive gradient does not generally yield a vector as it does not transform ac-
cording to equation (19). Only when the Jacobian coordinate transformation corresponds to an
orthogonal transformation

J−1
y = JT

y

does the naive gradient transform as a vector should.

In contrast, equations (9), (24), and (22) yield,

∇yf(y) = Ω−1
y

(
∂f(y)

∂y

)T

=
[
(Jy)

−T Ωx (Jy)
−1
]−1

J−Ty

(
∂f(y)

∂x

)T

= Jy Ω−1
x

(
∂f(y)

∂x

)T

= Jy∇xf(y) where y = h(x) (26)

showing that the gradient defined by (24) transforms in the manner of equation (19), i.e., like a
vector (contravariantly). Thus the magnitude and the direction of the gradient (which we know
to be the direction of steepest ascent of the function f(x)) is invariant with respect to coordinate
transformations.31

Now from equation (24) one might claim that the naive gradient is acceptable provided that
the metric tensor is Cartesian, Ωx = I , and this would be correct in the sense that the gradient

29More generally the gradient operator has meaning on pseudo-Riemannian spaces (i.e., on a space with a nonde-
generate metric) such as the Minkowski space-time of special relativity. See footnote (24).

30Later, we will see that it corresponds to the Cartesian gradient when certain conditions are satisfied.
31This is a consequence of the invariance of the inner product (so that angle of direction is invariant) and the norm

(so that magnitude is invariant) for vectors transforming like (19) and a metric tensor transforming like (20).



K. Kreutz-Delgado — Copyright c© 2003-2008, All Rights Reserved – Ver. ECE275A-LS2-F08v1.1 12

would give the correction direction of steepest ascent. However this still does not rectify the fact
that the naive gradient does not generally transform like a vector should.32 However, it is the
case that in elementary treatments of calculus one usually only considers changes of coordinates
which are pure rotations33 between Cartesian spaces and for this situation the naive gradient
does behave appropriately. Thus as long as one works in this elementary setting, the distinction
between the partial derivative and the gradient vanishes. However, this restriction disallows the
use of curvilinear coordinates and other coordinate systems having non-Cartesian metric tensors,
Ωx 6= I .

For this reason, we will now refer to the “naive gradient” as the “Cartesian gradient,” under the
assumption that the user is not naive, but rather is well aware of the assumptions (usually implicit)
which underly the valid use of this gradient. Of course, one might intentionally use the Cartesian
gradient “naively,” (as is commonly done in descent algorithms for ease of computation, as dis-
cussed below) even in the more general setting. In this case, however, one cannot claim that the
“gradient” is truly the gradient, i.e., that it provides the direction of steepest ascent. Furthermore,
the magnitude of the naive gradient and its direction (whatever it might mean) are not invariant
under a general change of coordinates.

Because the gradient (24) gives the direction of steepest descent in any coordinate system, it
is sometime referred to as the “natural gradient” in the sense that via its dependence on the metric
tensor, Ωx, it conforms to the natural (coordinate-invariant) level-set structure which a functional
induces on a Riemannian space.34 For this reason, it has been argued in some of the recent learning
theory literature that the use of the gradient (24) is preferable to the (possibly naive) use of the
Cartesian gradient in gradient descent-based learning and parameter estimation.35

To summarize, we have seen that the concept of a gradient as a vector and as an object defining
a (local) direction of steepest ascent of the values of a functional only makes sense in an inner
product space with a well-defined metric tensor. In general, then, the “gradient” formed from
simply transposing the partial derivative is generally not a well-defined geometric object.36 Even
in a Riemannian space, the naive gradient is a true gradient if and only the metric is Cartesian
(i.e., if and only if Ωx = I) and we restrict ourselves to orthogonal coordinate transformations.
The true, coordinate transformation-invariant gradient which gives the actual direction of steepest
ascent on a Riemannian space is the “natural” gradient given in equation (24).

32A general transformation y = h(x) can destroy the Cartesian assumption, resulting in Ωy 6= I .
33Recall that a pure rotation is a proper orthogonal transformation.
34 See Shun-ichi Amari, “Natural Gradient Works Efficiently in Learning,” Neural Computation, 10:251-76, 1998;

or Shun-ichi Amari & Hiroshi Nagaoka, Methods of Information Geometry, 2000, American Mathematical Soci-
ety/Oxford University Press. Amari and his coworkers have argued extensively for the importance of applying dif-
ferential geometric ideas and tools to problems of statistical inference. Using the tools of differential geometry they
have developed algorithms and insights into important domains such as turbo coding, density estimation, blind source
separation, adaptive filtering, etc.

35In particular, this has been argued forcefully by Shun-ichi Amari and his research colleagues, op. cit. footnote
(34). We will discuss the Natural Gradient algorithm of Amari in a later section.

36Indeed, it may not even be the gradient, if the gradient is to be understood in the correct sense of it providing the
direction of steepest ascent.
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1.3 Vector Derivative Identities
Comparing the partial derivative and the gradient, it is evident that the partial derivative is the more
fundamental object as it exists and is well defined even when a space is not an inner product space.
Furthermore, because of its simple structure it is usually straightforward to construct operator
identities involving the partial derivative. For this reason, even if one is primarily interested in
applications involving the gradient, to obtain gradient identities it is usually a good policy to first
prove the equivalent identities involving partial derivatives and then transform these identities into
gradient identities via equation (24).

The following very useful partial derivative identities can be readily shown to be true by
component-level and other considerations:

Partial Derivative Identities

∂ cTx

∂x
= cT for an arbitrary vector c (27)

∂ Ax

∂x
= A for an arbitrary matrix A (28)

∂ gT (x)h(x)

∂x
= gT (x)

∂ h(x)

∂x
+ hT (x)

∂ g(x)

∂x
, g(x)Th(x) scalar (29)

∂xTAx

∂x
= xTA+ xTAT for an arbitrary matrix A (30)

∂xTΩx

∂x
= 2xTΩ when Ω = ΩT (31)

∂h(g(x))

∂x
=

∂h

∂g

∂g

∂x
(Chain Rule) (32)

Note that one can readily transform these partial derivative identities into equivalent gradient iden-
tities, particularly in the simple case when the Hilbert space containing x is Cartesian.37 Identity
(27) can be easily shown to be true at the component level. Identity (28) follows from application
of Identity (27) to bTAx for arbitrary b. Identity (29) can be proved by component-level consid-
erations. Identity (30) is a special case of (29) via the identifications g(x) = x and h(x) = Ax.
Identity (31) follows from (30) via the identification A = Ω. Identity (32) can be proved by
component-level considerations.

37A Variety of such identities for ∂
∂x defined to be a row-vector, as in done in this note, can be found in Phoebus

Dhrymes, Mathematics for Econometrics, 3rd Edition, 2000, Springer. A very large number of such identities for ∂
∂x′

defined to be a row vector and ∂
∂x defined to be a column vector can be found in Helmut Lütkepohl, Handbook of

Matrices, 1996, Wiley.
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Finally, note that the partial derivative Identity (32) is a statement about Jacobians and can be
restated in an illuminating manner as

Jh◦g = Jh Jg , (33)

which says that “the linearization of a composition is the composition of the linearizations.”

2. Application to Nonlinear Least-Squares Problems

2.1 Nonlinear Least-Squares Loss Function
As an important example of the framework outlined above and the usefulness of the partial deriva-
tive identities (27)-(32), consider the derivation of the vector derivative of the nonlinear weighted
least-squares loss function,38

`(x) =
1

2
‖y − h(x)‖2

W =
1

2
‖e(x)‖2

W =
1

2
e(x)TWe(x) , e = y − h(x) , (34)

with W an m×m positive-definite matrix W .39 We have, as a straight-forward application of the
partial derivative identities,

∂

∂x
`(x) =

∂`

∂e

∂e

∂x
= eTW

∂e

∂x
= −eTW ∂

∂x
h(x) = − (y − h(x))T W

∂

∂x
h(x) . (35)

Comment. We will usually assume in the sequel that that x belongs to a Cartesian
space (the Euclidean space Rn with the Cartesian metric Ωx = I). The resulting
gradient, then will be equivalent to the Cartesian gradient discussed above.

This assumption is made in order to conform with the standard gradient-descent
theory which is based on the use of the Cartesian gradient, even though the extension
to the case Ωx 6= I is very straightforward40 In any event, the restriction of the central
development to the Cartesian case Ωx = I in the end will not result in any loss of
generality because we will later consider generalized gradient descent-algorithms, a
class of algorithms which includes “natural” gradient-descent algorithms41 as special
cases.

38The factor 1
2 is added merely for convenience. Recall thatW must be symmetric, positive-definite and corresponds

to the use of a weighted inner-product on Y = Rm.
39With the assumption that e = y − h(x) is small, we can view e as essentially living in the tangent space Rm

y

showing that we can take W = Wy to be the metric tensor on Rm
y . However, because y is kept constant, there is no

need to explicitly show the y-dependence of the metric tensor if it should exist.
Alternatively, we could take W = Wŷ , where ŷ = h(x̂), with x̂ a current estimate of a solution to the nonlinear

least-squares problem. However, as the required changes to the algorithms derived below are straightforward, we
choose to keep W constant to simplify the notation.

40As we shall make clear via a series of running footnotes on the simple modifications required to deal with the case
Ωx 6= I .

41That is, gradient descent algorithms based on the use of the gradient (24) as suggested by S. Amari, op. cit. foot-
note (34).
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With the assumption that Ωx = I , the (Cartesian) gradient of the weighted least-squares loss
function is given by

∇x`(x) =

(
∂

∂x
`(x)

)T

= −
(
∂h(x)

∂x

)T

W (y − h(x)) = −
(
∂h(x)

∂x

)∗
(y − h(x)) , (36)

where (
∂h(x)

∂x

)∗
=

(
∂h(x)

∂x

)T

W

is the adjoint operator of the Jacobian matrix ∂h(x)
∂x

with respect to the weighted inner product on
Y = Rm.42

2.2 Multivariate Taylor Series Expansion
Using the partial derivative notation developed above, we can denote the first-order Taylor series
expansion of a vector-valued function h(x) about a point x0 as,

h(x) = h(x0 + ∆x) = h(x0) +
∂h(x0)

∂x
∆x+ higher order terms , (37)

where ∆x , x− x0. Note in particular that if we set

∆y , h(x)− h(x0) = h(x0 + ∆x)− h(x0)

we have

∆y =
∂h(x0)

∂x
∆x+ higher order terms ,

showing that the Jacobian matrix,

H(x) ,
∂h(x)

∂x
, (38)

provides the linearization of h(x),
∆y ≈ H(x0)∆x .

The differential statement is, of course, exact

dy =
∂h(x0)

∂x
dx = H(x0) dx .

The Taylor series expansion of a scalar-valued function f(x) to second-order can be written as

f(x0 + ∆x) = f(x0) +
∂f(x0)

∂x
∆x+

1

2
∆xTH(x0)∆x+ h.o.t. (39)

42Note that if we had used the natural gradient for the case Ωx 6= I , we would have obtained
(

∂h(x)
∂x

)∗
=

Ω−1x

(
∂h(x)
∂x

)T
W in equation (36) from the fact that∇x`(x) = Ω−1x

(
∂h(x)
∂x

)T
.
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whereH(x) denotes the Hessian matrix of second-order partial derivatives,43

H(x) ,
∂2f(x)

∂x2
,

∂

∂x

(
∂f(x)

∂x

)T

=
(

∂2f(x)
∂xixj

)
.

Therefore we can approximate the scalar-function f(x) to quadratic order about a point x0 as

f(x) ≈ f(x0) +
∂f(x0)

∂x
∆x+

1

2
∆xTH(x0)∆x (40)

= f(x0) + (∇xf(x0))T ∆x+
1

2
∆xTH(x0)∆x . (41)

Note that in this subsection only the last step depends on the assumption that x belongs to a Carte-

sian space, Ωx = I , allowing us to take∇xf(x0) =
(

∂f(x0)
∂x

)T
.44

2.3 The Nonlinear Least-Squares Problem
Suppose we want to solve the nonlinear inverse problem

y ≈ h(x)

for a given nonlinear function h(·) : X → Y . We assume that h(·) is (locally) one-to-one45 but
generally not onto, Im(h) = h(X ) 6= Y .46 We continue to make the assumption that the metric
tensor is Cartesian, Ωx = I , while on the codomain Y the inner-product weighting matrix (metric
tensor on Y) is taken to be an arbitrary symmetric positive-definite m×m matrix W . Defining the
discrepancy between y and h(x) by the error e(x) = y − h(x), a rational way to proceed is to find
a value for x which minimizes the nonlinear least-squares loss function defined above in equation
(34).

As discussed earlier in equation (5) et seq., a necessary condition for x0 to be a minimum for
the loss function is that the partial derivative of the loss function evaluated at x0 vanish. Of course,
as we see from equation (24), an entirely equivalent condition is that the gradient vanish,

∇x`(x0) = 0 ,

43It is straightforward to show that the Hessian is symmetric, HT = H. However, in general, the Hessian is not
guaranteed to be positive definite.

44Note however that we could just as easily have written the quadratic expansion of f(x) in terms of the natural
gradient because the linear term can be alternatively written as

∂f(x0)

∂x
∆x = 〈∇xf(x0), ∆x〉

where here ∇xf is the natural gradient and the inner product is the weighted inner product associated with the metric
tensor Ωx.

45That is, h(x) is one-to-one in a neighborhood of the point x.
46Note that “generally not onto” means that we might have h(·) onto. We want to have a generally enough develop-

ment that we can handle both the case where h(·) is onto as well as the case where it is not onto.
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which from equation (36) above results in the nonlinear normal equations

H∗(x0) (y − h(x0)) = 0 (42)

where H(x) = ∂h(x)
∂x

is the Jacobian matrix of h(x) and H∗(x) = HT (x)W is the adjoint operator
to the JacobianH(x) assuming the inner-product weighting matrices Ωx = I andW on the domain
and codomain respectively.47

One can interpret the condition (42) geometrically as indicating that the error e(x) = y− h(x)
must be orthogonal to the tangent hyperplane spanned by the columns of the Jacobian H(x) at an
optimal point x0. Under the assumed condition that h(x) is locally one-to-one at the point x it must
be the case that the Jacobian matrix H(x) is one-to-one (has full column rank)48 and therefore the
n× n matrices H(x)TH(x) and H∗(x)H(x) = HT (x)WH(x) are invertible.

Note that if h(x) happens to be linear, so that h(x) = Ax, then H(x) = A, H∗(x) = ATW
and the condition (42) becomes the standard linear least-squares normal equations,

ATWAx0 = ATWy .

It is well-known that a sufficient condition for x0 to be a local minimum for the loss function
`(x) is that the stationarity condition (42) holds at x0 and the Hessian matrix of `(x) be positive
definite at x0,

H(x0) =
∂

∂x

(
∂`(x0)

∂x

)T

=
(

∂2`(x0)
∂xi∂xj

)
> 0 . (43)

To compute the Hessian, note from (35) that(
∂`(x)

∂x

)T

= −
(
∂h(x)

∂x

)T

W (y − h(x)) = −
m∑
i=1

(
∂hi(x)

∂x

)T

[W (y − h(x))]i

where hi(x) is the i-th component of the vector function h(x) and [W (y − h(x))]i denotes the i-th
component of W (y − h(x)). Then

H(x) =
∂

∂x

(
∂`(x)

∂x

)T

=

(
∂h(x)

∂x

)T

W

(
∂h(x)

∂x

)
−

m∑
i=1

∂

∂x

(
∂hi(x)

∂x

)T

[W (y − h(x))]i

= H(x)TW H(x)−
m∑
i=1

∂

∂x

(
∂hi(x)

∂x

)T

[W (y − h(x))]i

47For the general case Ωx 6= I one obtains the nonlinear normal equations (42) but with the adjoint Jacobian given
by H∗(x) = Ω−1x HTW .

48The linearizationH(x) being one-to-one in the neighborhood of the point x is a necessary and sufficient condition
for the nonlinear function h(x) to be locally one-to-one in a neighborhood of x. Similarly, h(x) is a locally onto
function if and only if H(x) is onto for all points in a neighborhood of x.
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or

H(x) = HT (x)WH(x)−
m∑
i=1

H (i)(x) [W (y − h(x))]i (44)

where

H(i)(x) ,
∂

∂x

(
∂hi(x)

∂x

)T

denotes the Hessian of the the i-th scalar-valued component of the vector function h(x).49

Evidently, the Hessian matrix of the least-squares loss function `(x) can be quite complex.
Also note that because of the second term on the right-hand-side of (44), the Hessian H(x) can
become singular or indefinite, further complicating numerical algorithms (such as the Newton
method discussed below) which are based on inverting the Hessian or assumptions of Hessian
positive-definiteness.

However, in the special case when h(x) is linear, h(x) = Ax, we have that H(x) = A and
∂Hi(x)

∂x
= 0, i = 1, · · ·n, yielding,

H(x) = HT (x)WH(x) = ATWA ,

which for full column-rank A and positive W is always symmetric and invertible.

The conditions (42) and (43) tell us when we have found a locally optimal solution. The ques-
tion still remains as to how we actually find one. Immediately below we discuss two iterative
techniques for finding an optimum. Specifically, we present the Newton Method and the Gauss-
Newton Method and discuss how they can be interpreted as special cases of Generalized Gradient
Descent, where the Generalized Gradient Descent methods are a general family of methods which
generalize the standard gradient descent method of nonlinear optimization and include new pro-
posed methods, such as the Natural Gradient Method of Amari.

The Newton Method. The Newton method is based on reiteratively minimizing the quadratic
approximation (40) of the loss function `(x) evaluated at a current estimate, x̂k of the unknown
optimal solution x0,50

`(x) = `(x̂k + ∆xk) ≈ ˆ̀Newton(∆xk) , `(x̂k) +
∂`(x̂k)

∂x
∆xk +

1

2
∆xTkH(x̂k)∆xk , (45)

where ∆xk = x − x̂k.51 To minimize the approximation (45) with respect to ∆xk, we solve the
necessary condition

∂

∂∆xk
ˆ̀Newton(∆xk) = 0 , (46)

49Note that all terms on the right-hand-side of (44) are symmetric, as required ifH(x) is to be symmetric.
50Note that the approximation (45) is equivalent to assuming that the loss function `(x) is well-modelled locally as

a quadratic function of x.
51Which is equivalent to x = x̂k + ∆xk.
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for an optimum “update” ∆xk. Using the vector derivative identities given above and assuming
the invertibility of the Hessian matrixH(x̂k),52 the necessary condition (46) yields,

∆xk = H−1(x̂k)HT (x̂k)W (y − h(x̂k)) , (47)

where the last step follows from equations (36) and (38). Note that the Hessian matrix

∂2

∂(∆xk)2
ˆ̀Newton(∆xk)

of the approximation (45) is equal toH(x̂k).53

Once we have determined the correction, we can then obtain an improved estimate of the
optimal solution as

x̂k+1 = x̂k + ∆xk = x̂k +H−1(x̂k)HT (x̂k)W (y − h(x̂k)) . (48)

Note that if x̂k is already an optimum solution, then∇x`(x̂k) = 0 yielding ∆xk = 0.

Equation (48) provides an iterative method for generating estimates of an unknown optimum
solution x0. As discussed below, the iterative algorithm (48) is usually slightly generalized by
including a positive, real-valued step-size parameter αk in the correction term

∆xk → αk∆xk = αkH−1(x̂k)HT (x̂k)W (y − h(x̂k)) , (49)

yielding the

Newton Algorithm:54

x̂k + αkH−1(x̂k)HT (x̂k)W (y − h(x̂k)) (50)

Often the step size is taken to be constant, αk = α ≤ 1. The simple choice α = 1 is sometimes
called the Newton step as this choice retrieves the pure Newton algorithm (48).

52Note that it is important therefore that the Hessian be numerically well-posed which, as discussed earlier, can be
problematic. Amari, op. cit. footnote (34), has argued that this can be a reason to prefer the Natural Gradient method
to the Newton Method.

53Also note that nowhere have we used any assumptions on the nature of Ωx.
54Note that in the derivation of the Newton algorithm we have nowhere made the assumption that Ωx = I . Thus

there is no need to modify the algorithm in the case Ωx 6= I . Note that in terms of the Cartesian gradient

∇ Cart
x `(x) =

∂`(x)

∂x

T

= HT (x)W (y − h(x))

the Newton algorithm can be written as

x̂k + αkH−1(x̂k)∇ Cart
x `(x̂k) .
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With an appropriate choice of the step-sizes αk,55 the algorithm (50) can usually be stabilized
and the iteratively produced estimates x̂k converge to a locally optimal solution xopt,

x̂∞ , lim
k→∞

x̂k = xopt

assuming thatH(x̂k is positive-definite for all x̂k and at the solution point x̂∞ = x opt. However, the
initial condition x̂0 used in (50) often results in different locally optimal solutions, so that a variety
of initializations are usually tried. The resulting locally optimal solutions are then compared and
the most optimal of them is kept as the final solution.56

As discussed in textbooks on optimization theory, the Newton method usually has robust and
fast convergence properties (particularly if the step-size αk is optimized to enhance the rate of
convergence). Unfortunately, the method is also usually difficult to implement as the construction
of the Hessian via equation (44) and its subsequent inversion at each iteration-step is usually dif-
ficult and time consuming. For these reasons other methods, such as the Gauss-Newton method
discussed next, are more often used.

The Gauss-Newton Method. Whereas the Newton method is based on reiteratively approxi-
mating the loss function about a current estimate x̂k to quadratic order, the Gauss-Newton method
is based on reiteratively linearizing the inverse problem about the current estimate. Note from
equation (37) that an expansion of h(x) about a current estimate x̂k yields

e(x) = y − h(x) ≈ y − h(x̂k)−H(x̂k)∆xk = ∆yk −H(x̂k)∆xk ,

and therefore

`(x) = `(x̂k + ∆xk) =
1

2
‖e(x)‖2

W ≈ ˆ̀Gauss(∆xk) ,
1

2
‖∆yk −H(x̂k)∆xk‖2

W . (51)

Note that this loss function provides a weighted least-squares solution to the lineararized inverse
problem

∆yk ≈ H(x̂k)∆xk . (52)

Recalling that h(x) is locally one-to-one if and only H(x) is one-to-one, the loss-function
approximation (51) can be minimized with respect to ∆xk yielding the unique correction

∆xk =
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W∆yk

=
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) (53)

= −
(
HT (x̂k)WH(x̂k)

)−1∇x`(x̂k) ,

55Quite often the Newton step αk = 1 will suffice. However, a vast literature exists on appropriate choices of
the step-size αk that will not only ensure stability but will provide the fastest rates of convergence. Good references
in this regard are D. Luenberger, Introduction to Linear and Nonlinear Programming, 1984, Addison-Wesley, and
D. Luenberger, Optimization by Vector Space Methods, 1969, Wiley.

56The question of if and when the true globally optimal solution has been found is generally a difficult one to answer.
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where the last step follows from equations (36) and (38). The Hessian matrix ∂2

∂(∆xk)2
ˆ̀Gauss(∆xk) of

the loss-function approximation (51) is equal to HT (x̂k)WH(x̂k).

As expected, the correction (53) is equivalent to

∆xk = H+(x̂k) ∆yk (54)

and provides the solution to the linearized inverse problem (52), where

H+(x̂k) = (H∗(x̂k)H(x̂k))−1H∗(x̂k) =
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W

is the pseudoinverse of H(x̂k) with respect to the W -weighted inner-product on Y = Rm.57

Once we have determined the correction (53)-(54), we can obtain an improved estimate of the
optimal solution as

x̂k+1 = x̂k + ∆xk = x̂k +H(x̂k)+∆yk (55)

= x̂k +
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) . (56)

Note that if x̂k is already an optimum solution, then ∇x`(x̂k) = 0 yielding ∆xk = 0 as a con-
sequence of equations (36) and (38). Equation (56) provides an iterative method for generating
estimates of an unknown optimum solution x0.

In practice, the iterative algorithm (55) is usually stabilized by including a positive, real-valued
step-size parameter αk

∆xk → αk∆xk = αkH
+(x̂k)∆yk = αk

(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W∆yk , (57)

yielding the

Gauss-Newton Algorithm:

x̂k+1 = x̂k + ∆xk = x̂k + αkH(x̂k)+∆yk (58)

or, equivalently,

x̂k+1 = x̂k + αk

(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k)) (59)

Often the step size is taken to be constant, αk = α ≤ 1 with the value α = 1 called the Gauss-
Newton step as this choice retrieves the pure Gauss-Newton algorithm (56)

57Note (because of the full column-rank assumption on the Jacobian H(x)) that the same result holds even if
Ωx 6= I . This shows that the Gauss-Newton method does not have to be modified in the case of a non-Cartesian
domain space. However, consistent with his comments regarding the Newton method, Amari (op. cit. footnote (34))
argues that this still does not mean that the correction is necessarily along a good local direction in the space X .
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With an appropriate choice of the step-sizes αk, the algorithm (59) can usually be stabilized58

so that the iterative estimates converge to a locally optimal solution x0,

x̂∞ , lim
k→∞

x̂k = x0 .

However, the initial condition x̂0 used in (59) often results in different locally optimal solutions,
so that a variety of initializations are usually tried. The resulting locally optimal solutions are then
compared and the most optimal of them is kept as the final solution.59

A comparison of equations (44), (47) and (53) indicates that the Gauss-Newton method can
be viewed as an approximation to the Newton method corresponding to the assumption that the
second term on the right-hand-side of (44) evaluated at x̂k is negligible,

m∑
i=1

H (i)(x) [W (y − h(x))]i ≈ 0 (60)

so that
H(x̂k) ≈ HT (x̂k)WH(x̂k) = H∗(x̂k)H(x̂k) . (61)

Another way to see this is to expand the definition of ˆ̀Gauss(∆xk) given on the right-hand-side of
(51) and then compare the result to the definition of ˆ̀Newton(∆xk) given in (45).

Consideration of the condition (60) allows us to conclude that if h(·) is onto, or if we have
other reasons to believe that the approximation error e(x̂k) = y − h(x̂k) can be made small,
then the difference between the Newton and Gauss-Newton algorithms will become negligible as
e(x̂k) → 0. Not surprisingly then, the simpler Gauss-Newton method is more often implemented
than the Newton method. However the Gauss-Newton method still requires a matrix inverse at
each iteration step, which can be computationally prohibitive. As discussed below, an even simpler
algorithm is provided by the gradient descent algorithm.60

Generalized Gradient Descent. Consider the nonlinear least-squares loss function (34). We
have that

d` =
∂`(x)

∂x
dx ,

so that if we linearize about a current estimate x̂k we can claim that

∆`(αk ∆xk) , `( x̂k + αk ∆xk︸ ︷︷ ︸
x̂k+1

)− `(x̂k) ≈ αk
∂`(x̂k)

∂x
∆xk = αk (∇x`(x̂k))T ∆xk (62)

58Quite often the Gauss-Newton step α = 1 will suffice.
59As with the Newton method, the question of if and when the true globally optimal solution has been found is

generally a difficult one to answer.
60However the increase in simplicity usually comes at the price of a significant degradation in the rate of conver-

gence.
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to a high degree of accuracy provided that αk ∆xk = x−x̂k is “small enough.” It is the requirement
that this approximation be valid which leads us to introduce the step-size parameter αk. The step-
size αk is chosen to have a small value precisely in order to keep the correction αk ∆xk “small
enough” to preserve the validity of equation (62), and (as we shall see below) this is done in order
to guarantee stability and convergence of the resulting algorithm.

Assuming the validity of equation (62), let the correction be given by

αk ∆xk = −αkQ(x̂k)∇x`(x̂k) = αkQ(x̂k)HT (x̂k)W (y − h(x̂k)) , (63)

where αk > 0 and Q(x) = QT (x) > 0 is an arbitrary positive-definite, symmetric matrix-valued
function of x.61 We call the termQ(x̂k)∇x`(x̂k) a generalized gradient and the resulting correction
(63) a generalized gradient-descent correction.

Recall that the gradient ∇x`(x̂k) defines the direction of steepest ascent of the function `(x)
at the point x = x̂k and the negative gradient, −∇x`(x̂k), gives the direction of steepest descent
at the point x̂k. For the case Q(x) = I , the correction is directly along the direction of steepest
descent and the resulting algorithm is known as a gradient descent algorithm.62 For the case
of a general positive-definite matrix-valued function Q(x) 6= I , we can potentially improve the
descent direction by using the negative of the generalized gradient as a descent direction, and the
resulting algorithm for an arbitrary Q(x) is called a generalized gradient descent algorithm. Thus
the generalized gradient descent algorithms include the standard gradient descent algorithm as a
special case.

With the correction (63) we obtain the

Generalized Gradient Descent Algorithm:

x̂k+1 = x̂k + αk ∆xk = x̂k + αkQ(x̂k)HT (x̂k)W (y − h(x̂k)) (64)

Important special cases:

Q(x) = I Gradient Descent Method (65)

Q(x) =
(
H(x)TWH(x)

)−1 Gauss-Newton Method (66)
Q(x) = H−1(x) Newton Method (67)
Q(x) = Ω−1

x Natural Gradient Method (68)

In particular:

Gradient Descent: x̂k+1 = x̂k + ∆xk = x̂k + αkH
∗(x̂k) (y − h(x̂k)) (69)

Natural Gradient: x̂k+1 = x̂k + ∆xk = x̂k + αk H̃
∗(x̂k) (y − h(x̂k)) (70)

Gauss-Newton: x̂k+1 = x̂k + ∆xk = x̂k + αkH
+(x̂k) (y − h(x̂k)) (71)

= x̂k + ∆xk = x̂k + αk H̃
+(x̂k) (y − h(x̂k)) (72)

61Note that if the approximation (62) is not valid for this particular choice of ∆xk, we can reduce the size of αk

until it is.
62Recall that we are assuming that Ωx = I so that the Cartesian gradient is the true gradient.
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where
H̃∗(x) = Ω−1

x H∗(x) = Ω−1
x HT (x)W

is the “natural” adjoint operator of the jacobian H(x) and

H̃+(x) =
(
H̃∗(x)H(x)

)−1

H̃∗(x) = (H∗(x)H(x))−1H∗(x) = H+(x)

is the “natural” pseudoinverse of the jacobian H(x), assuming metric tensors on the domain and
codomain of Ωx 6= I and W respectively.63

The increase in complexity involved in moving from a gradient descent algorithm to a Gauss-
Newton algorithm (or a Newton algorithm) is quite significant, however this move also generally
results in a significant improvement in performance. Although the classical Gradient Descent
method is the easiest of the methods to implement, it tends to have very slow convergence com-
pared to the Gauss-Newton and Newton methods.

The Natural Gradient Algorithm. The Natural Gradient algorithm is equivalent to gradient
descent using the natural gradient in order to obtain a correction along the true direction of steepest
descent as determined from the metric tensor appropriate for the space X . Of course, to implement
the Natural Gradient method requires the actual determination of an appropriate metric tensor Ωx

on X .

Shun-ichi Amari and his coworkers first proposed the use of the Natural Gradient method and
they have determined metric tensors for a variety of important statistical learning theory applica-
tions, including neural network learning, parametric density estimation, and blind source separa-
tion.64 As they have noted, it can be very difficult to construct the metric tensor for a parameter
space of interest and the resulting algorithms can be significantly computationally demanding.
However, there are applications where the implementation of the Natural Gradient method is sur-
prisingly straightforward and even computationally simple.65

Both theoretical and experimental results exist which show that the Natural Gradient method
can have excellent asymptotic learning properties and show significant improvement over naive
gradient descent.

63Note that the Newton and Gauss-Newton algorithms are “natural” in the sense that their derivations are indepen-
dent of the value of Ωx. However, Amari (op. cit footnote (34)) argues that this does not mean that they necessarily
give good correction directions as compared to the “natural gradient” algorithm. Furthermore to the degree that the
(naive or Cartesian) gradient descent algorithm purports to perform a correction along the direction of steepest de-
scent, it is evident that it fails in this goal to the degree that the Cartesian gradient used naively is not along the correct
direction of steepest descent, which is given by the natural (true) gradient.

64Shun-ichi Amari, op. cit. footnote (34).
65For the classical problem of parametric density estimation by finding the maximum likelihood estimate of the

parameter, one often obtains the parameter estimate via gradient descent on the negative log-likelihood function. It
can be shown that the metric tensor for the space of density parameters is the classical Fisher information metric.
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Importance of the Step-size Parameter for Ensuring Algorithm Stability. From equations
(63) and (64), and assuming the validity of (62), we obtain

∆`(αk∆xk) = `(x̂k+1)− `(x̂k) ≈ −αk (∇x`(x̂k))T Q(x̂k)∇x`(x̂k) = −αk‖∇x`(x̂k)‖2
Q(x̂k) < 0 ,

whenever∇x`(x̂k) 6= 0,66, so that we expect that the algorithm (64) will result in a strictly decreas-
ing loss function,

`(x̂k+1) < `(x̂k) .

This will not be the case if the step-size αk is chosen too large so that the key approximation (62) is
invalid. Furthermore, a proper choice of step-size can greatly improve the speed of convergence of
the algorithm. Thus we see that a proper choice of step-size is key to ensuring good performance
and, indeed, the step-size issue is usually discussed at great length in course on mathematical
optimization.67

A Naive Method for Step-Size Determination. The Generalized Gradient Descent algorithm is
of the form

x̂k+1 = x̂k + αk ∆xk

where
αk ∆xk = −αkQ(x̂k)∇x`(x̂k)

corresponds to a step in the opposite direction to the generalized gradient Q(x̂k)∇x`(x̂k)68 and the
size of this step is controlled by the value of the step-size parameter αk > 0.

As mentioned, the choice of step size can be very critical for ensuring convergence of a gen-
eralized gradient descent algorithm and is a major topic of concern in advanced textbooks on
optimization theory. If the simple choice of a constant value of αk is used, generally the smaller
the value of αk the more likely it is that the algorithm will converge but also that the rate of con-
vergence will be slow. Fortunately, the Newton and Gauss-Newton methods tend to be quite stable
and the choice of αk = 1 or αk equal to a constant value slightly less than one often works well in
practice.

More generally, the step size choice can be chosen dynamically.69 Note that we need αk → 0
more slowly than the generalized gradient goes to zero in order to avoid turning off the update step
before we have learned the unknown parameter vector x. In principle we require that α∞ > 0 but
practically we can have α∞ = 0 provided that the generalized gradient converges to the zero vector
before the step-size parameter has converged to zero. A simple (but very naive) dynamic choice
for αk is given by

αk = γ + α0β
k , k = 0, 1, 2, · · ·

66If∇x`(x̂k) = 0 then x̂k satisfies the necessary condition for a local optimum and the algorithm has converge to a
solution.

67D. Luenberger op. cit.
68The fact that Q(x̂k) is positive definite ensures that the angle between the gradient ∇x`(x̂k) and the generalized

gradient Q(x̂k)∇x`(x̂k) is less than 90o so that a movement along the generalized gradient direction always has a
component along the gradient direction.

69And even optimized–see D. Luenberger op. cit.
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for α0 > 0, 0 < β < 1, and 0 < γ � 1. More sophisticated ways to dynamically adjust the
step-size are discussed in the textbooks on optimization theory.70

A simple way to enforce convergence71 is to choose a step-size that guarantees that the loss
function `(x̂k) is decreased at each iteration time-step k as follows:

Begin

Choose values for α0 > 0 and 1 > β > 0

Set `k = `(x̂k) and j = 0

Loop Until `k+1 < `k

α = α0 β
j

x̂k+1 = x̂k − αQ(x̂k)∇x`(x̂k)

`k+1 = `(x̂k+1)

j ← j + 1

End Loop

End

This will ensure that `(x̂k+1) < `(x̂k) but at the potential cost of several expensive update and
loss function evaluations at each iteration step k of the generalized gradient descent algorithm.

2.4 Constrained Optimization and Lagrange Multipliers
Method of Lagrange Multipliers. Assume, for simplicity, that both the domain and codomain
are Cartesian, Ω = I , W = I . If there are p independent equality constraint conditions,72 they can
be represented as

g(x) ≡ 0 , (73)

where g(·) : Rn → Rp. The constraint condition (73) defines a locally p-dimensional smooth
surface in X = Rn which we call the constraint manifold.

Because the constraint condition (73) holds identically, the differential variations dx cannot
be freely chosen in an arbitrary manner (as was done for the derivation of the unconstrained sta-
tionarity condition (5)) and it must be the case that admissible differential variations satisfy the

70D. Luenberger op. cit.
71But perhaps at the expense of the speed of convergence.
72The p constraints g(x) = 0 are linearly independent at the point x if and only if the Jacobian matrix of g(x),

∂g(x)
∂x , has full row-rank at the point x.
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constraint condition,
∂g(x)

∂x
dx = 0 .

Thus, admissible variations dx must be in the nullspace of ∂g(x)
∂x

, dx ∈ N
(

∂g(x)
∂x

)
, which is just

the condition that dx lies in the tangent space of the constraint manifold at the point x.

Let `(x) be a general, arbitrary loss function.73 A necessary condition to have minimized the
loss function `(x) on the constraint manifold is that the projection of its gradient ∇x`(x) into the
nullspace of ∂g(x)

∂x
is zero. Equivalently, we require that∇x`(x) ⊥ N (∂g(x)

∂x
). Thus

∇x`(x) ∈ N
(
∂g(x)

∂x

)⊥
= R

(
∂g(x)

∂x

T
)
,

and therefore (
∂

∂x
`(x)

)T

= ∇x`(x) = −∂g(x)

∂x

T

λ (74)

for some vector λ ∈ Rp.74 Equation (74) is a necessary condition for the point x to minimize `(x)
on the constraint manifold.

The necessary optimality condition (74) can be rewritten as the equivalent necessary condition,

0 =
∂

∂x

(
`(x) + λTg(x)

)
=

∂

∂x
L(x;λ) , (75)

where
L(x;λ) = `(x) + λTg(x) (76)

is the lagrangian function. Notice that the stationarity condition

∂

∂λ
L(x;λ) = 0 (77)

retrieves the equality constraint condition (73), while the stationarity condition

∂

∂x
L(x;λ) = 0 (78)

retrieves the necessary condition (74).

The two necessary conditions (73) and (74) are together to be solved for the optimal point x.

Thus, the lagrangian (76) provides a complete encoding of the information needed to
solve for a solution to the necessary conditions (73) and (74).

73Not limited only to the least squares loss function described earlier.
74The elements of the vector λ are called lagrange multipliers.
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Linearly Constrained Quadratic Optimization. As an example, consider the linearly con-
strained quadratic optimization problem

min
x

1

2
‖x‖2

Ω subject to Ax = y

where the m× n matrix A is onto. The constraint condition can be written as

g(x) = y − Ax = 0 ,

and the lagrangian as

L =
1

2
‖x‖2

Ω + λT (y − Ax) .

We have that
0 =

∂

∂x
L = xTΩ− λTA ,

which can be solved to yield the condition75

x̂ = Ω−1ATλ .

Applying the condition Ax = y to this equation allows us to solve for the lagrange multipliers as

λ =
(
AΩ−1AT

)−1
y

so that finally
x̂ = Ω−1AT

(
AΩ−1AT

)−1
y = A∗(AA∗)−1y = A+y ,

which is equivalent to the solution obtained using geometric methods.

75Note that this condition is equivalent to the geometric condition that x̂ = A∗λ, i.e. the condition that x̂ ∈ R(A∗).
This justifies the claim made in lecture earlier in the quarter that the vector λ can be interpreted as a vector of lagrange
multipliers.


